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ABSTRACT 
In this paper a new approach is presented to identify the stiffness matrix of composite 

lattice panels based on the superposition method per angle of helical ribs. The major aim of 
this study is to find out a simple approach in order to compute the general stiffness matrix 
of panels using appropriate relations and equations of composite mechanics. These panels 
which constitute layers of a laminate include three types of ribs, and these ribs are 
laminates with unidirectional layers, inside which fibers are arranged along the length of 
each rib. For showing the ability and performance of this technique an example is 
presented. 
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1. INTRODUCTION 

Lattice structures have found growing applications in aerospace industries 
according to their high specific modulus and also low cost, extended studies have been 
made on these structures. These research works are generally conducted on cylindrical 
parts structures and are under axial loads and bending moments as well. Generally 
these structures are applied in the main body of aircrafts and interstage missile 
structures. Among these research works, V.V. Vasiliev et al. [1-2] have presented an 
integrated design, manufacturing and testing processes for high performance lattice 
structures made by continuous filament and wet winding of carbon and aramid epoxy 
composites and used as structural elements of airplane frames and space launching 
vehicles. In these papers, a lattice circular cylindrical structure with regular and dense 
system of ribs simulated by continuum models with ribs which are smeared over the 
structure surface, so to obtain its buckling behavior under axial loads. E. frulloni et al. 
[3] have presented a paper which is focused on the finite element modeling of the 
failure behavior of lattice composite hollow structures subjected to an external 
hydrostatic pressure. D. Slinchenko et al. [4] have presented a new approach to 
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analysis of a lattice shell. In this approach, constitutive equations are developed and the 
expressions for components of stress and strain tensors are derived for the revolving 
shells with different lattice patterns. In fact according to increasing demand by 
industries and also various applications of laminates, the use of laminates which 
contain lattice layers to decrease the weight of the structure seems to be a prerequisite 
not just for cylindrical shells but for every shape as well. 

In this study, a lattice layer has been analyzed via a simple method. This approach 
has been tested based on calculation of the stiffness matrix of a lattice layer as a 
laminate ply with superposition method, and then with the aid of this matrix, modulus 
of elasticity ( )xyxyyx ν,G,E,E  as a function of rib's angle and other variables are 
examined.  

2. THE STRUCTURE OF LATTICE LAYERS AT JOINT POINTS 

Lattice panels include three types of ribs. One of the ribs is arranged in horizontal 
state and the other two in helical states. The directions of helical ribs are symmetric 
around vertical axis. The arrangement type of ribs in each layer, however, is an 
important issue. In each rib, a filler foam layer (or the same resin used in composite 
layers) is placed between each two composite layers as shown in Fig. (1). This foam 
contains compound materials with low density. These layers are arranged purposely to 
allow continuity of composite layers at joint points, so that at each node, composite 
layers are continued and foam layers are discontinuous. 

 
Fig.  1.  Joint points of ribs [5] 

The important result is that joint node which is placed between ribs, individually, 
can stand no moment as for this point we do not consider significant mechanical 
properties shared with filler foam. Paying specific attention to this point is of outmost 
importance when using superposition method, because in this approach the effect of 
each rib against applied loads is calculated separately which would finally combine 
together. This means that if joint points of ribs bear any moment, the sum effect of ribs 
is not equal with the sum of applied loads and as a result our method would not lead to 
an ideal situation. 
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3. GENERAL ANALYSIS 

Relations between stresses and strains in a laminate plan are stated by [ ]A , [ ]B  
and [ ]D  matrices as we know it from the mechanics of a composite laminated plan. Eq. 
(1) expresses relationship between the forces and applied moments with strains and 
plan curvatures calculated via stiffness matrix of each layer according to relations 
available in composite mechanics: 
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Relations between stress and strain in each layer are stated by stiffness matrix of 
that layer as we already know it from mechanics of a single layer: 
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In this equation, the constants of stiffness matrix of each layer are computed 
according to the characteristics of that layer as well as using equations available in 
references related to composites mechanics. 

According to the above discussed issues, the only feature remained necessary for 
calculation of stiffness matrix of a composite laminate which also considers lattice 
layers is the way the stiffness matrix of lattice layers is computed. 

4. DERIVING OF STIFFNESS MATRIX 
OF A LATTICE LAYER 

A lattice plan includes three groups of ribs which are arranged in three directions. 
These directions are specified by angles of ribs with axis (x), and for defining 
mechanical properties of a plan, other variables are needed. These variables which are 
shown in Fig. (2) include. 

In order to use superposition method for mechanical analysis of lattice layers, 
some points and assumptions are needed to derive the required equations state by state: 
• Considering the superposition method, a lattice layer is assumed to have just one 

group of ribs and the effect of other ribs in each state is not taken into account. In 
each state, the resulted plane bears loads just along the ribs. It means that parallel 
ribs do not transfer loads to each other. 

• It is assumed that lattice layer is a continuous and conventional single layer with 
unidirectional fiber. In this assumption, the direction of ribs selected above is 
considered as direction (1). 

Note: Direction (2) is normal to direction (1) and should not be mistaken with 
direction of ribs which are symmetric with ribs of direction (1). 
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Fig.  2. Geometrical variables of a lattice plane: H  = Height of cross-section of ribs 

(thickness of lattice layer), hb  = Thickness of cross-section of helical ribs, cb  = Thickness 

of cross-section of horizontal rib, ha  = Distance between helical ribs, ca  = Distance 
between horizontal ribs, ϕ = Angle of helical ribs with axis (x) 

The first result from above assumptions is that according to discontinuity of 
constituents of a single layer which contains only one collection of ribs, the strain in 
direction (1) has no effect on strain in direction (2). Hence poisson’s ratio for such a 
layer is zero in direction 1 and 2 ( )0νν 2112 == . 

Now, in order to compute stiffness matrix of a desired layer, related to (x) and (y) 
axes, the amount of 1E , 2E  and 12G  are needed to be computed. 

 

4.1 Computation of 1E  

According to section (2) assumptions, the ribs are considered as unidirectional 
fibers and arranged into a resin (empty space in this case) in order to compute 1E  as 
shown in Fig. (3). According to micromechanical equations, for computing 1E : 

voidvoidribrib VEVEE
h

+=1  (3) 

where: 

hribE = Elastic constant of a composite plane of which the rib is made. This parameter 
is obtained from equation below: 

mmffhrib VEVEEE
h

+==  (4) 
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(A) Directional of longitudinal     (B) Variables     

and transverse modules           
Fig.  3 A lattice plane, just one collection of ribs  

voidsE = Elastic constant of empty space that is zero. 

0=voidE  (5) 

voidV  and ribV = Volume fraction of ribs and empty space are obtained as below, 
which according to Fig. (3): 
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According to above equations, it is resulted that: 
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On the other hand, according to assumptions (parallel ribs have no effect on each 
other), it is obvious that 2E  and 12G  are zero for such a plane: 

0GE 122 ==  (8) 

According to obtained results, stiffness matrix of desired plan is obtained as 
below: 
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Now stiffness matrix of plan, relative to (x) and (y) axes can be derived via 
continuum mechanics transforming equations. 
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4.2  Calculation stiffness matrix in each state and final results 
Using result for a plan which contains just one group of ribs in direction (1) and 

according to this point that joint points between ribs bear no moment, final stiffness 
matrix of lattice layer can be achieved via superposition method. 

 
Fig.  4. Ribs with ( ϕ+ ) angle 

After computing layer stiffness matrix in three various states, so that in each state 
there is just one group of ribs, they are added together and general stiffness matrix is 
obtained. These states and resulted matrices are: 
1- Plane just contains ribs which have a ( ϕ+ ) angle with (x) axis. In this state 

according to Eq. (9), plan stiffness matrix is: 
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with the use of transforming Equations, [ ]( )
+xyQ  matrix is obtained: 
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2- Plane just contains ribs which have ( )ϕ−  angle with (x) axis. Resulted matrix for 
this state is similar to that of previous state. But in this matrix 16Q , 61Q , 26Q  and 

62Q  have a similar but negative quantity because angle of ribs has minus sign: 
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Fig. 5. Ribs with ( )ϕ−  angle 

3- Plane contains only horizontal ribs ( )2πϕ = . 

 
Fig. 6. Horizontal ribs with an ( )2πϕ =  angle 

According to the method used to derive Eq. (7): 
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According to the resulting amounts and with the use of equations for constants of 
stiffness, matrix [ ]( ) 2π12Q  is obtained: 
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Now with the use of transforming equations [ ]( )
2/πxyQ  is obtained: 

 
Fig.  7. A lattice layer 
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According to three resulted matrices and via superposition method, general 
stiffness matrix of lattice layer is obtained by adding the matrices together: 

[ ]( ) [ ]( ) [ ]( ) [ ]( )
2/πxyxyxyxylattice QQQQ ++=

−+
 (16) 

So, constants of [ ]( )xyLatticeQ  matrix are: 
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The resulted matrix is the stiffness matrix of a lattice layer in (x) and (y) general 
co ordinations as shown in Fig. (7). 

Now [ ]A , [ ]B  and [ ]D  matrices for a laminate which contains lattice layers, are 
computable by equations used for calculation of these matrices [6]. 

5. VARYING ELASTICITY MODULUS OF A LATTICE 
LAYER AS FUNCTION OF HELICAL RIBS ANGLE 

One of the applications of a generally orthotropic lamina stiffness matrix is to 
determine the stiffness behavior of the considered layer. The properties which 
generally include modulus of elasticity and also strains ratio in (x) and (y) directions, 
can be computed by compliance matrix as presented in Table 1. 
Table 1 - Mechanical properties of the composite material 

Properties Symbols Magnitudes 

Fiber volume fraction Vf    (%) 62 

Longitudinal modulus E1    (GPa) 88 

Transverse modulus E2    (GPa) 8.8 

Shear modulus G12  (GPa) 2.8 

Poisson’s ratio 
12ν  0.28 

 
For lattice layers the easiest method to attain compliance matrix is to compute the 

inverse of its stiffness matrix: 

[ ]( ) [ ]( )[ ] 1−= xyLatticexyLattice QS  (18) 
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In order to compute modulus of elasticity in (x) and (y) directions and Poisson’s 
ratio, the defined equations of composite mechanics are used [5], therefore: 
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In order to explain that how the mentioned properties depend on angle of helical 
ribs, elasticity modulus and Poisson’s ratio (in x and y direction) are computed for a 
lattice layer which its ribs (helical and horizontal) are made of graphite/epoxy 
composite. The mechanical properties of this composite are shown in Table (1). In this 
study, the angle of ribs is varying between o0  to o90  and their geometrical variables 
(Fig. 2) are assumed as bellow: 

mm2aa ch ==     cm6bb ch ==  

Variation curves of elasticity modulus and Poisson’s ratio have shown in Fig. (8–
9). As it is shown, these properties are a function of helical ribs angle where 
geometrical variables are defined. 
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Fig.  8. Variation of elasticity modulus (GPa) versus ( )ϕ  
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Fig. 9. Variation of Poisson’s ratio versus ( )ϕ  

6. RESULTS AND DISCUSSIONS 

As it is shown in Fig. (8), xE  curve has a descending state versus angle ( )ϕ  

variations and equal to zero at ( )2πϕ = . This state is not unexpected because with 
increasing ( )ϕ  fewer loads are applied along the length of helical ribs. This 
phenomenon decreases stiffness of lattice layer along (x) axis which is dependent on 
longitudinal stiffness of helical ribs. 

But opposite to what was expected, yE  has a descending state as well. Because in 
fact, the amount of loads which are applied to horizontal ribs by helical ribs will 
increase when ( )ϕ  angle increases, and this finally causes additional strain of structure 
in (y) direction. This point causes decreases in structural stiffness in (y) direction while 
applying load. 

xyG  has an increasing and descending state. This condition is similar to all other 

continuous plies. The maximum of this curve causes in ( )45=ϕ  which shows highest 
shear stiffness. At last, using the results obtained from elasticity curves, Poisson’s ratio 
varieties versus ( )ϕ  can be determined easily. 

Another result of this study is an isotropic condition in arrangement of ribs. For 
this state, according to mechanical properties of isotropic layers, modulus of elasticity 
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in each direction should be the same. Therefore, according to the Eqs. (18 -19), if, 

yx EE =  (stiffness properties of isotropic layers) the following equation is derived: 
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and it shows relations between geometrical variables and mechanical properties of 
ribs in isotropic condition. 

7. CONCLUSION 

Superposition method is one of the simple methods used for analysis of lattice 
layers. In this study, using the method of deriving stiffness matrix of a lattice layer 
provides a simple approach for mechanical properties analysis of this kind of layers. 
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